
www.manaraa.com

Securing Our Data Storage Infrastructures
Bob Mungamuru

Stanford University
bobji@stanford.edu

Hector Garcia-Molina
Stanford University

hector@cs.stanford.edu

Abstract— The threats faced by data storage infrastruc-
tures can be broadly categorized into two classes – break-
ins and data loss. Unfortunately, defenses against break-
ins tend to increase the risk of data loss, and vice versa.
We introduce configurations as a model for quantifying
and managing the break-in and data loss risks faced by
a secure data storage system. Configurations can also be
used in making technology investment decisions within the
Gordon-Loeb framework.

I. INTRODUCTION

Data storage systems are a critical part of our in-
formation infrastructure. Disturbingly, the news these
days is filled with stories of how storage systems fail
– student records being stolen, patient records being
misplaced, a photo agency being sued because they lost
an artist’s digital images. Failures of our data storage
infrastructures are relatively costly, compared to say,
a failure of our communication systems. While the
latter typically causes a transient (but annoying) service
disruption, the former often results in either permanent
leakage or loss of critical data. Thus, our strategy for
defending our critical information infrastructures should
arguably begin with our data storage infrastructures, and
move on “outwards” to our networks.

Broadly speaking, we must safeguard our data storage
infrastructures against two basic types of failures. Firstly,
we must prevent break-ins to our system. By “break-
ins” we mean attacks on data privacy and confidentiality,
or any other event that leads to an unauthorized party
reading our sensitive data. Secondly, we must guard
against data loss – events that cause our own data to
become corrupted or unavailable to us.

A key observation is this: defenses against break-ins
tend to increase the risk of data loss, whereas defenses
against data loss tend to increase the risk of break-
ins. Consider, as an extreme example, System A which
simply deletes all the data that is input to it. From the
privacy point of view, System A is perfect – there is
no chance that the data will ever be leaked or stolen.
However, since our data is not preserved, it is not a
useful system. At the other extreme, consider System B

which proliferates many replicas of its input data across
several public sites on the Internet. Replication is clearly
good for the longevity of the data. However, System B
is weak in terms of privacy since anybody with access
to the Internet can read our private data.

It is our position that security research has tended to
neglect this fundamental tradeoff between data privacy
and data longevity. While we have seen tremendous
progress in techniques to separately ensure data privacy
(e.g., [2], [8]) and longevity (e.g., [7], [9]), there is
typically emphasis on just one objective or the other,
without examining the intimate relationship between the
two ([10] is one of the few exceptions). To fully under-
stand the risks faced by our data storage infrastructures,
we must simultaneously assess both the risk of break-
ins and the risk of data loss. We must then choose
a defensive strategy that jointly mitigates both risks,
judiciously balancing between privacy and longevity as
our resources and risk tolerances best allow.

In the remainder of this paper, we briefly describe an
analysis framework we have developed (as part of the
PORTIA project [3]) to assess and mitigate the risks
faced by data storage systems. We then discuss how
our framework can be used to make decisions regarding
investment in information security.

II. MANAGING RISK

We first present a simple model for secure data storage
systems, and show how to quantify the risks faced by
such systems. We then discuss how we might optimally
balance and mitigate such risk. Our model is developed
fully in [5] and [6].

A. Configurations

We begin by defining a pair of data operators that
will help us capture the tradeoff between privacy and
longevity. A Copy operator outputs n replicas of its input
data, making loss of the input data less likely. A Split
operator breaks its input into n shares such that all n
shares are necessary to reconstruct the input, making
break-ins less likely.



www.manaraa.com

Copy and Split operators are abstractions of real-
world operations that are used to safeguard data. For
example, a Copy can represent a simple tape backup
scheme, or a complex n-site replication protocol [7].
An n-way Split could mean encrypting the input data
with n − 1 keys, or vertically partitioning a database
relation into n shares. A Split does not even have to
be “cryptographic” – it could represent, say, a vertical
partitioning of a database relation into n subsets [1].
While many techniques exist for safeguarding data, the
semantics of Copy and Split operators capture a vast
majority that are used in practical systems.1

Secure data storage systems can be modeled as con-
figurations, which are compositions of Copy and Split
operators. For example, the configuration in Figure 1
describes how a company might safeguard a database
containing its trade secrets. The database is represented
by the root, r. The root is split into two shares, a and
f , say, using encryption. The encrypted database, a, is
stored in a public location on the company intranet. Two
copies of f (the encryption key) are then made, labeled
b and e. One copy, b, is materialized and physically
stored, say, on a CD-ROM. The other copy, e, is split
again into shares c and d (this time, say, by XOR-
ing e with a randomly generated sequence of bits).
The terminal vertices a, b, c and d at the bottom of
Figure 1 each represent materialized data objects. In this
example, a is a publicly accessible encrypted version
of r, and b, c and d are shares of the encryption key,
say, owned by users Bob, Carol and Dave, respectively.
The non-terminals e, f , and r represent transient data
elements that are by-products of the recursive splitting
and copying operations. The non-terminals (in particular,
the unencrypted database r) are not stored anywhere.
Thus, there is no single terminal that can be lost or
broken-into that will cause the entire database to be
compromised.

Thus, Figure 1 represents a scenario where Bob can
decrypt a by himself (perhaps Bob is the company
president), but Carol and Dave individually cannot –
they must collaborate in order to reconstruct the key
f needed to decrypt a (perhaps they are lowly VPs).
On the other hand, if one of Bob, Dave or Carol
somehow misplaces their share of the encryption key, all
is not lost since the key can be reconstructed using the
remaining shares. While this example is simplistic, it still
shows how a composition of Copy and Split operators

1The secret sharing operator discussed in [6] captures an even
broader set of practical techniques (e.g., RAID).

Fig. 1. Example configuration.

Fig. 2. Configuration with shared vertices.

can simultaneously protect our data from unauthorized
access and data loss.

Observe that the root can represent a single database
(as in our example), or the entire data storage infras-
tructure of an organization. In the latter case, an n-
way Split at the root might represent a partitioning of
data across n sites worldwide, and subsequent layers
might describe separate business units, and so on. Since
configurations are composable, we can refine our model
to any desired granularity. Also note that configurations
are not restricted to be trees, but can be rooted directed
acyclic graphs (DAGs). For example, consider Figure 2,
where d and e are copies of the root data r. Here, the
vertex b is shared by both d and e – it might represent a
single encryption key that is used to encrypt both d and e.
Thus, if Alice, Bob and Carol own data elements a, b and
c respectively, then Bob has to collaborate with either
Alice or Carol in order to access the decrypted database
r. The terminal representing Bob’s key has arrows from
both Split operators, since it is needed to reconstruct
either copy of r.

In summary, a configuration Θ is a DAG where non-
terminal vertices are either Copy or Split operators, and



www.manaraa.com

terminals represent the physical locations across which
the copies and shares of the root data are distributed. We
denote by T the set of physical resources (i.e., terminal
vertices) in Θ. A top-down view of a configuration tells
us how copies and shares are generated from the root,
and, reversing all arrows so that they point upward, the
bottom-up view tells us which terminal data elements are
needed to reconstruct the original data.

B. Probabilities of Failure

We can use failure probabilities to measure the risks
faced by a secure data storage system. We define the
probability of break-in, P (Θ), as the probability that an
attacker breaks into enough terminals in Θ to reconstruct
our data. The term “break-in” is used generally to mean
any event that leads to an unauthorized party reading
our private data e.g., hackers, password leaks, weak
passwords, or broken cryptography. Similarly, the prob-
ability of data loss, Q(Θ), is defined as the probability
that an attacker destroys enough terminals to make
reconstruction of our data impossible. “Data loss” refers
to events that prevent us from accessing our own data,
such as media failures, lost passwords or bit rot.

Consider the configuration illustrated in Figure 2, for
example. Let us assume that each of a, b and c is
broken-into independently with probability p = 1

4 . An
attacker wishing to reconstruct r must do one of three
things. He must either break into terminals a and b
only, or terminals b and c only, or all three of a, b and
c. Thus, the probability of data loss will be the sum
of the probabilities of these three mutually exclusively
outcomes i.e., P (Θ) = 2

(
1
4

)2 3
4 +

(
1
4

)3 = 7
64 . Similarly,

an attacker must destroy any of the following sets of
terminals to cause r to be lost: {b}, {a, b}, {b, c}, {a, c}
or {a, b, c}. Assuming the attacker destroys each terminal
independently with probability q = 1

4 , we sum over the
probabilities of these five outcomes to find Q(Θ) =
1
4

(
3
4

)2 + 3
(

1
4

)2 3
4 +

(
1
4

)3 = 19
64 .

Although the preceding example assumed indepen-
dence between the failures of individual terminals, this
was purely for illustration. The techniques developed in
[5] and [6] can account for arbitrary correlations between
the failures of terminals. It is even possible to model
correlations between break-in and data loss events e.g.,
a malicious attacker who destroys all data that he reads
(positive correlation), or an intrusion detection system
that alerts an administrator upon detecting a break-in
(negative correlation).

Thus, the probability that our storage system will
succumb to break-ins or data loss is a function of the

failure characteristics of the terminal data elements (i.e.,
p and q), as well as the manner in which data is
distributed across these terminals (i.e., the configuration
Θ). The following question arises naturally: Given a set
physical resources (i.e., terminals), which configuration
will offer us the “best” protection against break-ins and
data loss? We address this question next.

C. Optimization

We have described qualitatively that preventing data
loss tends to worsen privacy, and preventing break-
ins tends to worsen longevity. We can quantify this
tradeoff at an atomic level by studying Split and Copy
operators. It is easy to show that a Split operator will
decrease the probability of break-ins, but increase the
probability of data loss, whereas a Copy operator does
the exact opposite. Different compositions of Split and
Copy operators, therefore, offer us different balances
between break-in risk (i.e., P (Θ)) and data loss risk (i.e.,
Q(Θ)).

It is also easy to show that simply using more physical
resources (“throwing more money at the problem”) can
simultaneously improve both privacy and longevity i.e.,
we can achieve arbitrarily low levels of break-in and
data loss risk by simply using unbounded numbers of
terminals. Therefore, a more meaningful question to ask
would be: subject to some maximum level P0 of break-
in risk, and a fixed set T of physical resources, which
is the configuration Θ that minimizes Q(Θ), the risk of
data loss? We express this formally as:

min
Θ

Q(Θ)

s.t. P (Θ) ≤ P0 (1)

A solution to (1) would tell us how to optimally use our
existing resources in order to minimize our exposure to
data loss risk, given our tolerance for break-in risk.2 Of
course, solving (1) is quite difficult, since the size of the
space of configurations can be shown to grow double-
exponentially in the number of terminals. The focus of
[5], therefore, is to devise efficient solution techniques to
(1). A richer version of (1) is formulated and solved in
[5], where we can specify arbitrary failure distributions
across the terminals, as well as constraints such as which
user groups are to be allowed and denied access.

The results of [5] allow us to generate graphs such as
the one in Figure 3, which tells us the probability of data

2We could also minimize the break-in risk, P (Θ), for a fixed level
of data loss risk, Q0. This “dual problem” is entirely analogous to
(1). For simplicity, we focus on (1).



www.manaraa.com

loss we can achieve at various tolerance levels for break-
in risk. Figure 3 was generated using four terminals that
are each broken-into with probability 20%, and lost with
probability 20%, with failures being independent across
the terminals. The plot tells us, for instance, that if we
can only tolerate a 10% probability of break-in at the
root, we can achieve a 13% probability of data-loss.
Alternatively, if we can tolerate a 20% probability of
break-in, then there is a configuration that achieves a
probability of data loss of just 2.7%. This type of graph
illustrates how we might sacrifice “a bit” of privacy for
a large gain in data longevity.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
10

−2

10
−1

10
0

P
0
 − bound on probability of break−in

Q
(Θ

) 
−

 p
ro

ba
bi

lit
y 

of
 d

at
a 

lo
ss

Fig. 3. A privacy-longevity tradeoff curve.

III. INVESTING IN INFORMATION SECURITY

Modeling data storage systems as configurations can
also help us make decisions about investing in informa-
tion security. In particular, we can address two questions:

• How can we better utilize our existing resources?
• How should we allocate our security budget to

acquire additional resources?
Suppose we are managing a firm’s data storage infras-

tructure. We have tolerances P0 and Q0 respectively for
the break-in and data loss risks, and are given a budget
z0 with which to make necessary investments. Our first
step would be to analyze our current system (i.e., write
down a configuration Θ that represents our system) and
assess the data loss and break-in probabilities.

Now, using T , P0 and Q0 as inputs (recall that T
represents the current set of terminal vertices, or physical
resources, in Θ), we can solve (1) to determine if
we are using our resources effectively. Is our current
configuration offering us protection close to the optimal
levels achievable with our current resources? By using

the optimal configuration instead of our current one, it
might be possible to achieve (P0, Q0) using existing
resources. That is, we might achieve our desired levels
of risk using resources we already own, without any
investment into additional resources.

If we find that (P0, Q0) is not attainable using our
existing resources, then we need to invest in additional
resources. The question then becomes: how should we
spend our security budget z0? Simply put, we want to get
the most “bang for our buck”. As we will see shortly, our
framework also provides guidance here. A recent paper
by Gordon and Loeb [4] addressed a similar problem.
They ask: what is the optimal level z∗ of investment in
information security, against a threat that would cause a
loss to us of L dollars? The centerpiece of the analysis in
[4] is a “security breach probability function”, S(z, v),
which tells us the conditional probability of security
breach as a result of spending z to defend against the
threat, when the current breach probability is v. They
leave the exact form of S(z, v) mostly unspecified.

Our framework allows us to actually compute S(z, v)
for a given data storage system, as follows. Suppose we
had a set I of possible security technologies we can
invest in. For each investment alternative i ∈ I, we
know its cost zi, and failure probabilities pi and qi. For
example, i = 1 might be an expensive server that is
highly resistant to break-ins and data loss (i.e., z1 is
large, p1 and q1 are small), whereas i = 2 might be a
cheaper “commodity” node (i.e., z2 is smaller, but p2

and q2 are larger). We want to find the budget-feasible3

subset I∗ ⊆ I that gives us the largest possible reduction
in data loss risk. Then, S(z0, v) will be the security
breach probability that results from investing z0 into
I∗. (Contrary to the assumptions in [4], the function
S(z, v) that we compute is not continous. However, as
the authors of [4] acknowledge, any real-world instance
of S(z, v) will have discontinuities.)

Formally, let Q(Θ) be the optimum value of (1),
using the current resource set T . That is, v = Q(Θ).
Let QI(Θ) be the minimum probability of data loss
achievable when resource set I is added to our current
resource set. We compute QI(Θ) by keeping the break-
in risk tolerance P0 fixed, and solving (1) using T ∪ I ,
rather than just T . For a fixed z, we then get:

S(z, v) = min
I⊆I s.t zI≤z

QI(Θ) (2)

Here, zI ≡
∑

i∈I zi. Using (2), we can compute S(z, v)
for several values of z. Finally, using S(z, v), we can

3Budget-feasibility of I implies
P

i∈I zi ≤ z0.



www.manaraa.com

use the framework in [4] to find the optimum amount z∗

to invest in information security.
We have considered here the problem of optimally

investing z0 to reduce data loss risk, while keeping our
tolerance for break-in risk fixed. A somewhat different
problem is optimally investing to simultaneously reduce
break-in risk and data loss risk (rather than keeping
break-in risk fixed). There would now be a pair of
security breach probability functions, say, SBI(z, v) and
SDL(z, v), over which we must optimize. We may need
to extend the model in [4] to multiple threat types, and
possibly reformulate (1). The fleshing out of such details
is a topic for future work.

IV. CONCLUSIONS

We have argued that there is a fundamental tradeoff
between ensuring data privacy and data longevity. It
is our position that a firm must bear in mind this
tradeoff when making design decisions and investment
decisions pertaining to security. There are also other con-
siderations, beyond the privacy-longevity tradeoff. For
example, the performance, management, and usability
of a system are important interrelated factors to con-
sider when choosing a security strategy. The modeling
techniques we have developed provide a partial answer
to these considerations (e.g., measuring the depth of
the configuration, or the total number of operators), but
better metrics are clearly needed.

The analysis framework outlined here is a first step to-
ward quantifying the privacy-longevity tradeoff. We feel
that the type of structured system modeling presented
here can be the basis of economic decision-making in
information security contexts.

V. ACKNOWLEDGEMENTS

This work was partially supported by NSERC, and by
the NSF through the PORTIA project.

REFERENCES

[1] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Ken-
thapadi, R. Motwani, U. Srivastava, D. Thomas, and Y. Xu.
Two can keep a secret: A distributed architecture for secure
database services. In Proceedings of 2nd Biennial Conference
on Innovative Data Systems Research, 2005.

[2] R. Agrawal, A. Evfimievski, and R. Srikant. Information sharing
across private databases. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2003.

[3] D. Boneh, J. Feigenbaum, A. Silberschatz, and R. N. Wright.
Portia: Privacy, obligations, and rights in technologies of infor-
mation assessment. IEEE Data Engineering Bulletin, 27, 2004.

[4] L. A. Gordon and M. P. Loeb. The economics of information
security investment. ACM Transactions on Information and
System Security, 20(5):438–457, Nov. 2002.

[5] B. Mungamuru, H. Garcia-Molina, and S. Mitra. How to
safeguard your sensitive data. In Proceedings of the 25th IEEE
Symposium on Reliable Distributed Systems, 2006.

[6] B. Mungamuru, H. Garcia-Molina, and C. Olston.
Configurations: Understanding alternatives for safeguarding
data. Stanford InfoLab Technical Report, 2005.
http://dbpubs.stanford.edu/pub/2005-41.

[7] V. Reich and D. S. H. Rosenthal. LOCKSS: Lots of copies
keeps stuff safe. In Proceedings of Preservation 2000, 2000.

[8] L. Sweeney. k-anonymity: a model for protecting privacy. In-
ternational Journal on Uncertainty, Fuzziness and Knowledge-
based Systems, 10(5):557–570, 2002.

[9] V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza,
Y. Saygin, and Y. Theodoridis. State-of-the-art in privacy
preserving data mining. SIGMOD Record, 33(1):50–57, 2004.

[10] J. Wylie, M. Bigrigg, J. Strunk, G. Ganger, H. Kiliccote, and
P. Khosla. Survivable information storage systems. IEEE
Computer, 33(8):61–68, Aug. 2000.


